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In a recent paper �1� Skoge et al. presented new accurate
numerical data on amorphous packings of hard spheres in
space dimension d�3. It was shown �see, e.g., Fig. 4 in �1��
that, on compressing the low-density liquid at a constant rate
�, the pressure of the system follows the equilibrium pres-
sure of the liquid up to some density �often called the glass
transition density� above which the pressure starts to increase
faster than in equilibrium, and diverges on approaching a
value of density �J���, which is called the jamming density
�here and in the following by “density” we mean the packing
fraction, defined as �=vd�� /2��, where � is the number den-
sity of spheres, vd�r� the volume of a d-dimensional hyper-
sphere of radius r, and � the diameter of one sphere�. Crys-
tallization seems to be strongly suppressed by kinetic effects
in dimension d�3 and can then be neglected in the follow-
ing discussion. Values of �J��� have been accurately mea-
sured in �1� as a function of �. On the contrary, �g��� is not
precisely determined as long as ��0: the glass transition is
smeared and happens in a crossover region ��g

−��� ,�g
+����.

However, the amplitude of the crossover interval seems to
decrease for �→0 �see again Fig. 4 in �1�, and see �2� for a
recent theoretical discussion of these effects�.

Recently, a theory of the glass transition of hard spheres,
that can be applied in any space dimension d, was developed
�3,4�. The basic idea is that the phenomenology observed at
finite � is due to an underlying thermodynamic glass transi-
tion �5–7�: i.e., that in the limit �→0, �g

±���→�K, the Kauz-
mann density, at which an equilibrium phase transition to a
glass phase happens. This is an idealized picture that neglects
metastability effects due to the presence of the crystal: the
consequences of this approximation might be important but
cannot be discussed here; see �4� for a detailed discussion.
However, as it seems that crystallization is negligible in d
�3, a comparison between the theory and the data of �1� is
possible. In the equilibrium glass phase, the pressure in-
creases faster than in the liquid phase �i.e., the compressibil-
ity is smaller�, and diverges at a value of density �RCP
=lim�→0�J��� which we call the random close packing
�RCP� density. This is the definition of random close packing
that can be given within our theory. However it is affected by
the metastability effects related to the presence of the crystal;
see �4,8� for a discussion. In particular, in �8� the notion of
the random close packing density has been criticized and an
alternative notion of maximally random jammed �MRJ�
packings has been proposed �see below�.

Our theory is based on standard liquid theory and on the
replica trick: it takes as input the equation of state of the
liquid phase �in practice one has to choose an expression that
describes well the liquid at low density and extrapolate to
higher density�, and gives as output �i� the Kauzmann den-
sity �K; �ii� the random close packing density �RCP; �iii� the
equation of state in the glass phase; �iv� some properties of
the pair correlation function in the glass phase, e.g., its shape
close to contact; �v� the equation of state of the metastable
glass states that are reached for ��0 and their contribution
to the entropy �the configurational entropy or complexity�;
see �3� for all the technical details. One of the most interest-
ing predictions of the theory is that 2d�RCP�d log d for
large d. As far as I know, this scaling was proposed in �3� for
the first time. The aim of this comment is to show that the
results of �1� are fully compatible with this prediction.

With this aim, an expression for the equation of state of
the liquid in d�3 is needed as input to the theory. The sim-
plest choice is a generalization of the celebrated Carnahan-
Starling equation of state to d�3 �9�:

Y��� =
1 − ��

�1 − ��d ,

� = d − 2d−1�B3/b2� , �1�

where Y���=g��+� is the value of the radial distribution
function at contact, and b and B3 are the second and third
virial coefficients, whose exact expression is known �9�. The
entropy of the liquid S��� is obtained by integrating the
exact expression

�
dS

d�
= −

�P

�
= − 1 − b�Y��� . �2�

Given S���, the random close packing density is the solution
of

S��� − d log� �8

2d�Y���
� +

d

2
= 0, �3�

while the Kauzmann density is the solution of

S��� − d log� �2	

2dQ0�Y���
� = 0, �4�

with Q0=0.638. . . �3�. These equations can be easy solved
numerically to get the values of �RCP and �K for any given
value of d. The results are reported in Table I for d
8, and
compared with �MRJ as reported in �1�. The latter quantity is*Electronic address: francesco.zamponi@phys.uniroma1.it
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the density of the maximally random �according to some
measure of “order”� collectively jammed packings of the sys-
tem �see �8� for the precise definition�; it is estimated in �1�
by the jamming density �J��� for finite but small � �see Sec.
IV in �1� for a detailed discussion�. As �J��� is expected to
increase on decreasing � and �RCP=lim�→0�J���, it follows
that �MRJ, as estimated in �1�, should be strictly lower than
�RCP, but close to it, consistently with the data in Table I. A
plot of �K and �RCP for d up to 19 is reported in Fig. 1. Note
that it has been suggested in �1� that 2d�MRJ�c1+c2d; this
scaling is not in contradiction with 2d�K ,2d�RCP�d log d
because �MRJ does not need to be bigger than �K, even if this
seems to be the case for d
6.

The very nice data for d=4 reported in Fig. 4 of �1� allow
for a more precise comparison of the numerical and theoret-
ical results: the value of �J��� is reported for five different
values of �=10−3 ,10−4 ,10−5 ,10−6 ,10−7. A standard proce-
dure to extrapolate to �→0 is to fit the data to a Vogel-
Fulcher law:

���J� = �010−D/��RCP−�J� ⇔ �J��� = �RCP +
D

log10��/�0�
.

Such extrapolations are often ambiguous; however, the fit is
good and gives �RCP=0.473, D=0.03, �0=0.45. The final
result for �RCP differs by �10% from the theoretical value
�see Table I�. This is a very good result given the ambiguities
that are present both in the numerical data �numerical error
and extrapolation� and in the theory �the choice of a particu-
lar expression for the equation of state of the liquid that is
not exact; see �10� for recent contributions�. Note that a simi-
lar extrapolation is not possible in d=3 due to crystallization,
and for d�4 due to lack of numerical data. Hopefully, new
data for d�4 will allow for a similar comparison also in this
case. Note also that the value of �K�0.43 we obtain in d
=4 seems to agree very well with the extrapolation of �g���

�defined roughly as the point where the curves leave the liq-
uid equation of state� to �=0 in Fig. 4 of �1�.

A more accurate comparison of the theory with the nu-
merical data is possible: for instance, the theory gives a pre-
diction for the glass equation of state that is close to the
measured pressure in the glass branch for very small �, e.g.,
�=10−7 in Fig. 4 of �1�; it also predicts that the amorphous
packings are isostatic, i.e., the average number of contacts
per sphere is z=2d, in any dimension d, and this seems to be
confirmed by the numerical data. Other properties of the
packings such as the shape of the correlation function g�r�
close to contact are predicted to be independent of the di-
mension. Unfortunately we are still not able to give a predic-
tion for the splitting of the second peak of g�r�, which seems
to be strongly suppressed in d�3. We hope that future work
will address this and many other open questions �4�. The data
reported in �1� provide a very good test of the theories
aiming to understand the behavior of hard spheres in large
space dimension �3,11–13� and strongly call for further
developments.

ACKNOWLEDGMENTS

This paper is based on a collaboration with G. Parisi: I
wish to thank him for his continuous support. I wish to thank
A. Donev, S. Torquato, and F. H. Stillinger for comments and
many useful discussions. The work is supported by the EU
Research Training Network STIPCO �Grant No. HPRN-CT-
2002-00319�.

�
�� �

� ��
��

�
��

�
�

��
�
�

��

�

��

�

��

�

��
��

5 10 15
d

0

20

40

60

80

2d φ

φ
MRJ

[1]
φ

RCP
φ

K� �

��
��

��

��

3 4 5 6
5

10

15

FIG. 1. �Color online� Plot of �K �open squares, obtained by
solving Eq. �4��, �RCP �full diamonds, Eq. �3��, and �MRJ �full
circles, numerical estimate of �1�� as a function of the dimension.
Both �K and �RCP scale as 2d��d log d for large d, while their
distance scales as 2d��RCP−�K��d. In the inset the same plot for
3
d
6 �compare with Fig. 6 in �1��.

TABLE I. Values of �K and �RCP from the theory �only values
for d
8 are reported for brevity; values for d�8 are in Fig. 1�
compared with the available measured values of �MRJ �1�. The last
column gives the value of �RCP extrapolated from the data of �1�
�see text�.

d �K �theory� �RCP �theory� �MRJ �1� �RCP �extrapolated�

3 0.6175 0.6836 0.64

4 0.4319 0.4869 0.46 0.473

5 0.2894 0.3307 0.31

6 0.1883 0.2182 0.20

7 0.1194 0.1402

8 0.0739 0.0877
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